

LBNL Superconducting Magnet Program

Presentation to HEPAP

March 6, 2003

Stephen A. Gourlay

Superconducting Magnet Program

- Program Overview
 - Mission and Philosophy
 - History
 - Conductor and Materials
 - Magnets

- Technical Progress and Current Status
- Future Plans
 - Base Program
 - LHC Accelerator Research Program

Mission and Philosophy

- Accelerator Magnet Program emphasizing development of new technology for HEP
 - <u>Issue-driven</u> accelerator magnet program
 - Explore parameter space and challenge existing limits
 - High fields/gradients
 - Aperture
 - Field quality
 - Cost effective designs

"LBNL continues to lead the US effort (possibly the world effort) in advanced high-field superconducting magnet technology for high energy physics"

J. O'Fallon, Nov. 2001 Program Review

HEPAP Recommendations

- 2001
 - "... high priority to accelerator R&D because it is absolutely critical to the future of our field".
 - LBNL has been developing enabling technology for HEP for over 20 years
 - "High-field magnet research is particularly important"
 - LBNL has produced record breaking fields in two different geometries
 - No program has built more magnets with fields exceeding 10 Tesla
 - LBNL leadership of the LARP Magnet Program (S. Gourlay)
 - LBNL leadership of the DOE/HEP Conductor Development Program (R. Scanlan)
 - "efforts should be made to form an international collaboration as early as possible".
 - LBNL-sponsored international workshop on "Magnets beyond NbTi" (3/17-18/03)
 - Participation in ESGARD (European Steering Group on Accelerator R&D)

History of Program Contributions

NbTi Technology

- SSC
 - First 40 mm dipole prototypes
 - Quad prototypes (1m and 5m)
 - Materials and cable development
 - D19
 - World Record Dipole field of 10.15 T
 - 50 mm aperture SSC prototype
- LHC
 - Cable for IR quads
 - IR quad design
 - DFBX components

Nb₃Sn Technology

- $\cos\theta$ geometry
 - − D19h − Nb₃Sn/NbTi hybrid
 - D20
 - World record dipole field of <u>13.5 T</u>
 - 50 mm aperture
- Racetrack geometry
 - Common coil
 - 6 T, 12.2 T, 10 T
 - World record dipole field of <u>14.7 T</u>
 - "H" geometry
 - > 15 T (This summer)

Superconducting Magnet Program

Full spectrum development program for superconducting magnet technology Magnets

- Two decades (+) at the forefront of magnet technology
 - Our program maintains continuity
 - Driven by HEP, not lab priorities
 - Opportunity for innovation not just an iteration of what was done before
- Strong interactions with industry, labs and universities
 - Exceptional record in materials development with industry
 - DOE/HEP Conductor Development Program
 - SBIR's
 - Organizer and sponsor of Low Temperature Superconductor Workshop

World experts in the application of Nb₃Sn technology to accelerator magnets

SC Materials and Cable Development

State of the art cabling facility to support HEP technology programs

- Lead Lab for DOE Conductor Development Program
 - Significant progress on Nb₃Sn J_C
 - 50% increase in 3 years
 - $\sim 3,000 \text{ A/mm}^2 \text{ at } 12 \text{ T and } 4.2 \text{ K}$
- LHC HGQ Cable
 - NbTi cable for FNAL completed 2-02
 - Fully keystoned Nb₃Sn for LHC upgrade

- Cable R&D
 - Explore the limits of Rutherford-type cables
 - New techniques
 - New Materials (HTS)
- Outside Support
 - FNAL, BNL, Texas A&M, U.
 Twente, SBIRs

Common Coil Magnets at LBNL

- High Field
- Field Quality
- Simple Fabrication Techniques

10.9 Tesla

12 Tesla RT1

6 Tesla RD2

12 Tesla SM-01

Magnet Development

Fully Integrated Program

- Field quality design options
 - RD Series
- New geometries for high field
 - HD-Series
- Technology Development
 - Sub-scale model program (SM)

RD-Series

Explore potential for accelerator quality magnets

Common Coil geometry

Emphasis on field and field quality

TYPE : ASSEM NAME : RD3C_MAG_STRUCTURE SIZE . C

Sub-Scale Magnet Series

Parallel Program for Technology Development High Productivity - Anticipate a total of 5 tests this year

- Scaled version of full-size magnet
 - Approx. 1/3 scale
- Field range of 9 12 Tesla
- Simple two-layer racetrack coils
 - 5 kg of material per coil
- Streamlined test facility
 - Small dewar (no refrigerator)
 - Full crane coverage

HD-Series

Simple geometries to push the limits of conductor and materials

- HD-1a; high stress, high field
 - > 15 Tesla
 - Simplest geometry, no grading
 - Single aperture (less conductor)
 - No conductor at mid-plane
- HD-1b; new fabrication techniques
 - -16 + Tesla
 - Coil grading
- HD-2; limit of Nb₃Sn technology
 - 17 Tesla

Two double-pancake coils with Horizontal orientation

High Field in HD-Series

Dipole field (T)	Iss (kA)
16.1	10.7
15.3	10.1
17.5	14.0
18.6	13.0
	16.1 15.3 17.5

R&D Program Tree

Current Status

- HD1 is now under construction
 - Test this summer
- Productive Sub-scale program
 - Evaluation of new cable designs
 - Insulation test for FNAL
 - Quench Protection Studies

- DOE/HEP Conductor Development Program continues to show excellent progress
- Lots of ideas for the future

New Opportunity

US LHC Accelerator Research Program

LARP Magnet Program

- Improve long-term physics research opportunities of the LHC
- Extend US leadership in high–field accelerator magnets
- Develop world-wide collaboration on high-performance magnets

Represents the first opportunity for the use of Nb₃Sn in an accelerator

As world leaders in Nb₃Sn technology for accelerator magnets, we can contribute significantly to this program

US LHC Research Program

- Main Issues
 - High fields and gradients
 - Large beam-induced heat loads

Nb₃Sn

- Program
 - Integrate the three US laboratories and include university participation
 - Leveraged by
 - Existing technology base
 - Intellectual resources
 - Facilities
 - Strengthen international collaboration
 - Include CERN, ESGARD, EU
 - Workshop in Archamps in 1 week

- 2003 05
 - Technology, simple models
- 2006 09
 - More complex models
- 2010 12
 - Accelerator-ready prototype

LHC Accelerator Upgrades

- Luminosity (IR upgrade)
 - Options
 - IR I
- ns

 I Large aperture quad with maximum gradient > 250 T/m

 Targe:
 - IR II
 - High gradient 2/1 quad with maximum gradient > 300 T/m
 - Large bore separation dipole with a field > 15 T
 - Smaller bore, 2/1 dipole with a field > 15 T
- Energy Upgrade
 - Technology development supported by LARP, applied through LBNL base program
 - Small aperture, high field arc dipoles (17 T)

High Field (Nb₃Sn) Dipole Prototypes

LHC(CERN, 1988)

MSUT (*U. Twente 1995*)

LHC LHC Luminosity Upgrade Energy Upgrade

RD3c(LBNL 2002) (LBNL 1999)

RT-1 D-20

1.9K

RD3b(LBNL 1996) (LBNL 2001)

LBNL Superconducting Magnet Program

- Extensive expertise in application of Nb₃Sn to high field magnets
 - Apply proven LBNL technology
 - LHC Upgrades
 - Future HEP Projects
 - Develop and maintain the largest set of HEP options
- DOE has set ambitious goals for the program
 - Supported by a significant funding increase in FY04

In order to maintain our position at the leading edge of this technology, the trend needs to continue